

BIRZEIT UNIVERSITY
Electrical and Computer Engineering Department
ENCS339 Operating Systems $2{ }^{\text {ed }}$ Semester 2017/2018
Midterm Exam Instructors: Dr. Adnan H. Yahya, Dr Ahmad Afaneh Time:90min
Student Number: \qquad Student Name : \qquad
Please answer all questions (2 sections) using the exam sheets ONLY and be BRIEF. Please show all steps of your solutions. Max grade is: $\mathbf{1 0 8}$

Question $1 \mathbf{(2 0 \%}$) A computer system has 16GB of physical memory (RAM). The

Q	ABET	Max	Earned
Q1	e	20	
Q2	e	20	
Q3	a	15	
Q4	\mathbf{c}	16	
Q5	\mathbf{c}	20	
Q6		17	
\sum		108	

(a) Indicate on the diagram below which of the bits of the logical address of 46 bits are used for page number (p) and for offset (d) (4\%)

d: [0-13] 14 bit , p [14-31] 18 bit

b. How many frames are there in the RAM? (4\%)
$16 \mathrm{~GB} / 16 \mathrm{~KB}=2^{34} / 2^{14}=2^{20}$ Frames
c. Ignoring page table overhead and OS needs, how many pages can a process have (max) to be runnable in contiguous memory allocation mode? (3\%)
Since the max number of pages is less than the max number of frames the answer is the max number of pages 2^{18}
d. What is the minimal number of bits needed for frame numbers of this computer page map tables (PMTs)? In bits \qquad , in Bytes \qquad ?(3\%)
e. Given a 12 GB Process what is the size of the Page Map Table (PMT) in bytes and pages.

Can the table be placed in a ONE level table? Show why and why not. Show the final diagram of the page map table for such a job. (3\%)
$12 \mathrm{~GB} / 16 \mathrm{~KB}=0.75 \times 2^{20}$ PAGES
PMT size in bytes $=0.75 \times 2^{20} \times 3 B=9 \times 2^{18} B$
PMT size in pages $=9 \times 2^{18} B / 16 \mathrm{~KB}=9 \times 2^{4}=144$ pages
f. TLB access time is 5% of RAM access time. RAM access time is 200 ns . The TLB hit rate for paging $\boldsymbol{\alpha}$ is 98%. Compute the effective access time EAT if only one level of paging for the page map table is used. What is the Max EAT possible in this system and how to achieve it? (3\%)
$\mathrm{EAT}=.98(200+10)+0.02(2 \times 200+10)=214 \mathrm{~ns}$
\qquad
Question $2 \mathbf{(2 0 \%}$) Consider a computer system involving 5 processes (P1, P2, P3, P4, P5) and 4 different types of resources ($\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4$). The state of the processes and resources is reflected in the tables below.

(a) 8% Use Banker's algorithm to check if this system is currently deadlocked, or can any process become deadlocked if it continues working from the current state? Why or why not? If not deadlocked, give an execution order

Deadlocked \square YES \square NO
If Not deadlocked: Execution Order is: \qquad
(b) 6% If a request from a process P2 asks for the resource vector $(0,1,2,0)$, can the request be immediately granted? Why or why not? If yes, show an execution order. Explain your answer.
(c)6\% If instead of (b), process P1 asks for the resource vector ($0,2,4,0$), can the request be immediately granted? Why or why not? If yes, show an execution order. Explain your answer.

3 ENCS339 Operating Systems, Midterm Exam, Second Semester, 2017-2018,
Dr. Adnan Yahya, Dr Ahmad Afaneh
Student Number:---
Question $\mathbf{3}$ (15\%)
a. Match the question with one correct answer.
b. Match the question with as many correct answers as possible. Partitions are dynamic and the size of the partition is the same as the job size.

Answer	Questions		Answers
$\mathbf{1 , 5}$	First Fit for hole selection is partitioned memory management	1	Is the same as best fit if holes are ordered in the increasing size (largest last).
$\mathbf{4 , 5}$	Best Fit for hole selection is partitioned memory management	2Is the same as best fit if holes are ordered in the Decreasing size (largest first).	
$\mathbf{3 , 5}$	Worst Fit for hole selection is partitioned memory management	3	Has worst external fragmentation
$\mathbf{3 , 5}$	Random Fit for hole selection is partitioned memory management (selection is random)	4	Has best external fragmentations
$\mathbf{6}$	Paging for memory management	5	Has no internal fragmentation
		6	Has no external fragmentation

c. Suppose two threads execute the following C code concurrently, accessing shared variables a, b, and c :

Initialization int $\mathrm{a}=4$; int $\mathrm{b}=0$; int $\mathrm{c}=0$;

Thread 1

Thread 2
if $(a<0)\{$
$\mathrm{c}=\mathrm{b}-\mathrm{a}$;
b = 10;
a $=-3 ;$
\} else \{ c = b + a; \}
What are the possible values for \mathbf{c} after both threads complete? You can assume that reads and writes of the variables are atomic, and that the order of statements within each thread is preserved in the code generated by the C compiler. Switching between threads can take place after any instruction.
T 1 starts: $\mathrm{c}=0+4=4$; T 1 starts: then $\mathrm{T} 2 \mathrm{~b}=10$ then $\mathrm{c}=10+4=14 ; \mathrm{T} 1$ starts: then $\mathrm{T} 2 \mathrm{~b}=10, \mathrm{a}=-\mathbf{3}$ then $\mathrm{c}=10+3=13$; T 2 starts: $\mathrm{b}=10$, then $\mathrm{T} 1 \mathrm{~b}=10$, Then $\mathrm{T} 2 \mathrm{a}=-3$ then $\mathrm{c}=103=7$; T 2 starts: $\mathrm{b}=10, \mathrm{a}=-3$, Then T 1 then $\mathrm{c}=10-3=7$;

Answer:c= \qquad 4,7,13,14,-3

What is happening here that causes this behavior: \qquad Race \qquad
\qquad

Question 4 ($\mathbf{1 6 \%}$) Consider a dynamic partitioning system in which the (free) memory consists of the following list of holes (free partitions), sorted by increasing memory address (all sizes are in Megabytes):

Suppose a new process P1 requiring 10 MB arrives, followed by a process P 2 needing 11 MB of memory. Show the list of holes after both of these processes are placed in memory for each of the following algorithms (start with the original list of holes for each algorithm).
i) First Fit-5\%:

ii) Worst Fit -5\%:

iii) Best Fit-5\%:

Question 5 ($\mathbf{2 0 \%}$) Show the scheduling order for these processes under 4 policies: First Come First Serve (FCFS), Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1 and Priority, by filling in the Gantt chart with ID of the process currently running in each time quantum. Assume that context switch overhead is 0 and that new RR processes are added to the head of the queue and new FCFS processes are added to the tail of the queue.
For each of the algorithms: Priority, First Come First Served, RR and Shortest remaining time first compute the
Finish time, TA time and Weighted Turnaround (W) time and the averages.
Note that weighted TA for a process equals TA didvided by CPU burst: $\mathbf{W}=\mathbf{T A} / \mathbf{C P U}$ _Time

$\begin{gathered} \hline \text { Proc } \\ \text { ess } \\ \text { ID } \\ \hline \end{gathered}$	Arriva I time	CPU burst time	$\begin{gathered} \hline \text { Pri } \\ \text { orit } \\ y \end{gathered}$	FCFS			SRTF			RR, slice $=1$			Priority/P		
				F	TA	W									
A	0.0	2	2	2	2	1	2	2	1	3	3	$\begin{gathered} 3 / 2= \\ 1.5 \end{gathered}$	2	2	1
B	1.0	6	1	8	7	$\begin{aligned} & 7 / 6= \\ & 1.16 \end{aligned}$	9	8	$\begin{aligned} & 8 / 6= \\ & 1.33 \end{aligned}$	13	12	$\begin{gathered} 12 / 6 \\ =2 \end{gathered}$	16	15	$\begin{aligned} & 15 / 6 \\ & =2.5 \end{aligned}$
C	4.0	1	5	9	5	5	5	1	1	5	1	1	5	1	1
D	7.0	4	3	13	6	$\begin{gathered} 6 / 4= \\ 1.5 \\ \hline \end{gathered}$	16	9	$\begin{aligned} & 9 / 4= \\ & 2.25 \\ & \hline \end{aligned}$	16	9	$\begin{aligned} & 9 / 4= \\ & 2.25 \end{aligned}$	14	7	$\begin{aligned} & 7 / 4= \\ & 1.75 \\ & \hline \end{aligned}$
E	8.0	3	4	16	8	$\begin{aligned} & 8 / 3= \\ & 2.67 \\ & \hline \end{aligned}$	12	4	$\begin{aligned} & 4 / 3= \\ & 1.33 \end{aligned}$	15	7	$\begin{aligned} & 7 / 3= \\ & 2.33 \end{aligned}$	11	3	1
$\begin{aligned} & \text { Avg } \\ & \text { e } \end{aligned}$		16/5=3.2			$\begin{aligned} & 28 / 5 \\ & =5.6 \end{aligned}$	$\begin{aligned} & 11.34 / \\ & 5=2.3 \end{aligned}$		4.8	$\begin{gathered} 6.74= \\ 1.35 \end{gathered}$		$\begin{aligned} & 32 / 5 \\ & =6.4 \end{aligned}$	$\begin{aligned} & 9.08 / 5 \\ & =1.82 \end{aligned}$		$\begin{gathered} 28 / 5= \\ 5.6 \end{gathered}$	$\begin{aligned} & 7.25 / 5 \\ & =1.45 \end{aligned}$

(a) FIFO/FCFS(First Come First Served):

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Process	A	\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{D}	\mathbf{D}	\mathbf{D}	\mathbf{E}	\mathbf{E}	\mathbf{E}			

(b) SRTF (Shortest Remaining Time First).

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Process	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{C}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{E}	\mathbf{E}	\mathbf{E}	\mathbf{D}	\mathbf{D}	\mathbf{D}	\mathbf{D}			

(c) Round Robin.

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Process	\mathbf{A}	\mathbf{B}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{B}	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{D}			

(d) Priority (higher priority value, better)

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Process	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{C}	\mathbf{B}	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{E}	\mathbf{E}	\mathbf{D}	\mathbf{D}	\mathbf{D}	\mathbf{B}	\mathbf{B}			

Question $6(17 \%)$ True or false and give ONE SENTENCE EXPLANATION. Then copy answers to the table at the end. Sample true false only, no explanations (though needed in exam).

1. \quad True \square False: A Cycle in resource allocation graph indicates a deadlock when we have only one (single) instance of each resource.
2. \quad True \square False: Aging is used as a mechanism to solve the deadlock problem.
3. \quad True \square False: Signal() primitive usually results in resources made available while wait() usually reduces the number of available resources.
4. \square True \square False: Compaction is a costly process in memory management.
5. \quad True \square False: Starvation happens when the system doesn't have the resource a process needs and thus the process cannot progress.
6. \quad True \square False: Races happen in programs when the final results are affected by the execution order of process instructions.
7. \square True \square False: Shortest-job-first scheduling is optimal in the sense that no other scheduling results in better throughput for a collection of processes.
8. \square True \square False: Given a constant number of bits in a virtual address, the size of a linear page table decreases with larger pages (page size).
9. \quad True \square False: In real time systems the process with the earliest deadline has always to start immediately after the previous process finishes and can never be forced to wait.
10. \square True \square False: In a multiprocessor system with multiple cores a process gets assigned to a given processor (affinity) to reduce cache misses.
11. \square True \square False: Threads that are part of the same process share the same stack.
12. \square True \square False: A process can move form a ready state to the waiting state, say if it consumes all of its time quantum.
13. \square True \square False: With kernel-level threads, multiple threads from the same process can be scheduled on multiple CPUs (cores) simultaneously.
14. \square True \square False: In a symmetric multiprocessor, threads can not always be run on any processor.
15. \square True \square False: Locks prevent the OS scheduler from performing a context switch during a critical section.
16. \square True \square False: Last Come First Served scheduling algorithm can lead to starvation.
17. \square True \square False: A Job can have several processes and a process can have several threads.

Please make sure to copy your answers to the following table (-3 points if not copied).

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\square \mathbf{T r u e} \mathbf{O R}$	$\square \mathbf{T}$																
\square False	$\square \mathbf{F}$																

